

Towards an Integrated Water Quality Toolbox

Henry B. Manguerra, John Zastrow, Gustavo Lopez, Haihong Yang, and Vaishal Sheth

Tetra Tech, Inc. Fairfax, VA

Framework for Monitoring and Assessment

Why a Framework??

- Multiple Agencies
- Various Practices
- Various Database Technologies
- Various Analytical and Presentation Techniques

Framework for:

- Collecting and Storing Data
- Using Data

Framework for Access and Analysis

Framework = Medium + Suite of Tools = WQA

WQA Background

- Some of the projects that led to the conceptualization of WQA
 - Utah Data Assessment and Integration Tools to Support TMDL Development
 - Impairment Analysis for Southwest Florida Watersheds
 - Water Quality Exceedance Analysis for El Paso, Colorado

Project: Utah Data Assessment and Integration Tools

- Objective
 - Provide Utah DWQ staff easy access to water quality data to support TMDL development
- Background
 - Utah Modern STORET database
 - EPA BASINS and spreadsheet-based tools for TMDL development
- Key Development Milestone
 - UDAIT Web Application

Project: Utah Data Assessment and Integration Tools

Project: Impairment Analysis for Southwest Florida Watersheds

- Project Objective
 - Determine waters of concern within the South Florida watersheds.
- Background
 - Multiple data sources
 - Complex Florida Impaired Waters Rule
- Key Development Milestone
 - Automating impairment analysis

Florida IWRule for Aquatic Life Based Criteria

Project: Water Quality Exceedance Analysis, El Paso, Colorado

Objective

 Determine water quality exceedances at monitoring stations within El Paso county using State of Colorado Water Quality Criteria.

Background

- EPA HQ modern STORET database
- Yet another set of standards and rules for analysis (compared to Florida)

Key Development Milestone

 Desktop application to provide local copy of data for a particular project (GIS, standards, water quality data)

WQA Conceptually

WQA Client Application - Components

Presentation Plugin

WQA Server Side Components

WQA Technologies

- WQA Unified Database
 - Oracle 9i
- Web Services
 - Microsoft .Net
 - ArcIMS 4.1 ArcXML Web Services
- Rich Client
 - Map Objects Java Edition 2.0

WQA Step 1 – Choose a Study Area

WQA Step 2 – Build a Project

WQA Step 3 – Review Data

WQA Step 4 – Calculate Impairments

Calculate

Impairments

Entity ID	Param	Fraction	Unit	Exceedan	Samples	% Failed	Standard	Mean	Minimum	Maximum
COARFO01	Ammonia, unionized		mg/l	4	82	4.9%	>0.02	0.004	0.0	0.0875
COARFO01	Arsenic	Total	ug/l	0	56	0%	>50	1.196	0.0	34.0
COARFO01	Boron	Total	ug/l	0	56	0%	>750	29.214	0.0	130.0
COARFO01	Cyanide	Total	ug/l	4	6	66.7%	>0.005	0.035	0.0	0.18
COARFO01	Dissolved oxygen (DO)		mg/l	1	89	1.1%	<=6	9.927	5.7	13.0
COARFO01	Fecal Coliform		#/100ml	72	146	49.3%	>229	1,189.877	0.0	54000.0
COARFO01	Mercury	Total	ug/l	1	1	100%	>0.01	0.5	0.5	0.5
COARFO01	Nitrogen, Nitrate (NO3) as NO3	Total	mg/l	0	78	0%	>10	0.949	0.0	8.8
COARFO01	Nitrogen, Nitrite (NO2) as NO2	Total	mg/l	0	61	0%	>0.05	0.006	0.0	0.047
COARFO01	Selenium	Dissolved	ug/l	13	34	38.2%	>4.6	3.997	0.0	14.0
COARFO01	рН		ug/l	2	198	1%	>9	8.754	6.9	79.0
COARFO02a	Arsenic	Total Reco	ug/l	0	15	0%	>50	3.4	1.0	10.0
COARFO02a	Arsenic	Total	ug/l	0	25	0%	>50	4	1.0	18.0
COARFOUS	Cyanida	Total	uad	2	e	50%	S0 005	0.005	0.0	0.01

Close

Export Summary

Tetra Tech, Inc.

Choose a study area

Review Data

Calculate Impairments

Inspect Output

WQA Step 5 – Inspect Output

Review A

Inspect (Output

WQA Step 6 – Export Results

Future Directions

Establish Distribution Mechanism

Future Directions

- XML Linkage with Existing Data Sources
 - STORET, USGS NWIS
- Customization of Analysis Plug-ins for End Users
 - Impairment Analysis
 - Business Rules
 - Water Quality Standards
 - Others

Thank you

Contact: henry.manguerra@tetratech-ffx.com
703-385-6000

